الگوریتم ژنتیک (Genetic Algorithm – GA) تکنیک جستجویی در
علم رایانه برای یافتن راهحل تقریبی برای بهینهسازی و مسائل جستجو است.
الگوریتم ژنتیک نوع خاصی از الگوریتمهای تکامل است که از تکنیکهای
زیستشناسی فرگشتی مانند وراثت و جهش استفاده میکند. در واقع الگوریتمهای
ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیشبینی
یا تطبیق الگو استفاده میکنند. الگوریتمهای ژنتیک اغلب گزینه خوبی برای
تکنیکهای پیشبینی بر مبنای تصادف هستند. مختصراً گفته میشود که الگوریتم
ژنتیک (یا GA) یک تکنیک برنامهنویسی است که از تکامل ژنتیکی به عنوان یک
الگوی حل مسئله استفاده میکند. مسألهای که باید حل شود ورودی است و
راهحلها طبق یک الگو کد گذاری میشوند که تابع fitness نام دارد هر راه
حل کاندید را ارزیابی میکند که اکثر آنها به صورت تصادفی انتخاب میشوند.
کلاً این الگوریتمها از بخش های زیر تشکیل میشوند: تابع برازش، نمایش،
انتخاب، تغییر
فهرست :
فصل اول
مقدمه
به دنبال تکامل…
ایدۀ اصلی استفاده از الگوریتم ژنتیک
درباره علم ژنتیک
تاریخچۀ علم ژنتیک
تکامل طبیعی (قانون انتخاب طبیعی داروین)
رابطه تکامل طبیعی با روشهای هوش مصنوعی
الگوریتم
الگوریتمهای جستجوی ناآگاهانه
الف جستجوی لیست
ب جستجوی درختی
پ جستجوی گراف
الگوریتمهای جستجوی آگاهانه
الف جستجوی خصمانه
مسائل NPHard
هیوریستیک
انواع الگوریتمهای هيوریستیک
فصل دوم
مقدمه
الگوریتم ژنتیک
مكانيزم الگوريتم ژنتيك
عملگرهاي الگوريتم ژنتيك
کدگذاری
ارزیابی
ترکیب
جهش
رمزگشايي
چارت الگوريتم به همراه شبه كد آن
شبه كد و توضيح آن
چارت الگوریتم ژنتیک
تابع هدف
روشهای کد کردن
کدینگ باینری
کدینگ جایگشتی
کد گذاری مقدار
کدینگ درخت
نمایش رشتهها
انواع روشهای تشکیل رشته
باز گرداندن رشتهها به مجموعه متغيرها
تعداد بيتهاي متناظر با هر متغير
جمعيت
ايجاد جمعيت اوليه
اندازه جمعيت
محاسبه برازندگي (تابع ارزش)
انواع روشهای انتخاب
انتخاب چرخ رولت
انتخاب حالت پایدار
انتخاب نخبه گرایی
انتخاب رقابتی
انتخاب قطع سر
انتخاب قطعی بریندل
انتخاب جایگزینی نسلی اصلاح شده
انتخاب مسابقه
انتخاب مسابقه تصادفی
انواع روشهای ترکیب
جابهجایی دودوئی
جابهجایي حقيقي
ترکیب تکنقطهای
ترکیب دو نقطهای
ترکیب n نقطهای
ترکیب یکنواخت
ترکیب حسابی
ترتیب
چرخه
محدّب
بخش_نگاشته
احتمال تركيب
تحليل مكانيزم جابجایي
جهش
جهش باينري
جهش حقيقي
وارونه سازی بیت
تغییر ترتیب قرارگیری
وارون سازی
تغییر مقدار
محک اختتام اجرای الگوریتم ژنتیک
انواع الگوریتمهای ژنتیکی
الگوریتم ژنتیکی سری
الگوریتم ژنتیکی موازی
مقایسه الگوریتم ژنتیک با سیستمهای طبیعی
نقاط قوّت الگوریتمهای ژنتیک
محدودیتهای GAها
استراتژی برخورد با محدودیتها
استراتژی اصلاح عملگرهای ژنتیک
استراتژی رَدّی
استراتژی اصلاحی
استراتژی جریمهای
بهبود الگوریتم ژنتیک
چند نمونه از کاربردهای الگوریتمهای ژنتیک
فصل سوم
مقدمه
حلّ معماي هشت وزیر
جمعیت آغازین
تابع برازندگی
آمیزش
جهش ژنتیکی
الگوریتم ژنتیک و حلّ مسألۀ فروشندۀ دورهگرد
حل مسأله TSP به وسیله الگوریتم ژنتیک
مقایسه روشهای مختلف الگوریتم و ژنتیک برای TSP
نتیجه گیری
حلّ مسأله معمای سودوکو
حل مسأله
تعیین کروموزم
ساختن جمعيت آغازين يا نسل اول
ساختن تابع از ارزش
تركيب نمونهها و ساختن جواب جديد
ارزشيابي مجموعه جواب
ساختن نسل بعد
مرتب سازی به کمک GA
صورت مسأله
جمعیت آغازین
تابع برازندگی
انتخاب
ترکیب
جهش
فهرست منابع و مراجع
پیوست
واژهنامه
:: برچسبها:
الگوریتم ژنتیک ,
الگوریتم ژنتیک و حلّ مسألۀ فروشندۀ دورهگرد ,
الگوریتمهای جستجوی ناآگاهانه ,
الگوریتمهای هيوریستیک ,
تابع برازندگی ,
جستجوی خصمانه ,
جستجوی درختی ,
جستجوی گراف ,
حل مسأله TSP به وسیله الگوریتم ژنتیک ,
حلّ مسأله معمای سودوکو ,
حلّ معماي هشت وزیر ,
,
:: بازدید از این مطلب : 74
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0